Evaluation of New Chemical Entities as Victims of Metabolic Drug Drug Interactions

Presented by Tonika Bohnert on Behalf of IQ DDI Victim Working Group
IQ Annual Symposium
Oct 9th 2014
Victim(Affected Drug) DDI : The Issue

Victim DDI Risk Assessment is Critical for:
- Early clinical risk assessment to guide *Safe* First in Human
- Certain exclusion criteria (DDI/Polymorphism)

Ensure Patient safety → drug development, registration, and post-marketing phases

Definitive studies not commonly done till POC/Ph2

Currently no recommended integrated strategy for victim DDI risk assessment in the clinic

FIH: First in Human; POC: Proof of Concept
Collaboration of 21 IQ companies to: Integrate existing best industry practices of use of in vitro methods, in vivo preclinical studies, modeling and simulation, to recommend strategy to evaluate NCEs to be *victim of metabolic DDIs* in the clinic → To be published as White Paper (Q4 2014)
Three Critical Areas of Focus of WG

De-risking Victim Drug DDI potential

- f_{CL}
 - How best to estimate contribution of metabolism vs renal/biliary excretion to NCE CL
 - Perspective & Recommendations

- f_{m}
 - Guidelines to estimate fractional contribution of CYPs & non-CYPs towards NCE metabolism
 - Current status & future needs

- Modelling & Simulation (M&S)
 - Key input information for victim drug DDI prediction
 - Recommend M&S strategy to influence decision-making at different stages of drug development

WG: Working Group; CL: Clearance; NCE: New Chemical Entity
\(f_{\text{CL}} \) and \(f_m \)

\(f_{\text{CL}} \): Fraction of drug *cleared by a pathway*: Route of Clearance

\[
f_{\text{CL,metabolism}} + f_{\text{CL,renal}} + f_{\text{CL,biliary}} = 1
\]

\(f_m \): Fraction of drug *metabolized* by an enzyme (i.e. \(f_m, \text{CYP3A4} \))

Potential severe ramifications when \(f_m \times f_{\text{CL,metabolism}} > 0.5 \)

\(f_m \) and \(f_{\text{CL}} \) assessments commonly not done till Ph2

With Competitive inhibitor with [I]/Ki of 15 (Ref: Rowland Matin equn)
Approaches to Estimate f_{CL}
Understanding role of metabolism in humans is critical to making an accurate prediction of victim DDI potential
f_{CL} Determination in Humans

- Clinical DDI study with CYP-selective (or appropriate DME) inhibitor

\[
f_{m,CYP} \approx f_{i,CYP} = 1 - \frac{AUC_{control}}{AUC_{inhibited}}
\]

- assumes complete inhibition of the CYP enzyme
- for CYP3A4, assumes $F_g^{inhibited} = F_g^{control}$

- Radiolabeled human ADME study

- $f_{CL,metabolism}, f_{CL, renal}$ quantitatively determined
- Elimination pathways defined (in excreta), e.g. metabolic, parent drug secretion, etc.

Caveats: unstable metabolites in excreta (e.g. glucuronides converted back to parent in feces), non-absorbed parent drug vs. secreted parent, estimations of enzyme involved in the primary reaction(s) when secondary/tertiary metabolites formed

F_G: Fraction escaping gut metabolism
The sequence, timing, & nature of a common set of in vitro & in vivo studies that companies routinely rely on, to estimate \(f_{\text{CL,metabolism}} \) in humans depends on case by case approach.

In absence of definitive \(f_{\text{CL}} \) data in humans, thoroughly assess available information of NCE (BCS class, confidence in human IVIVE based on animal IVIVE, \(f_{\text{CL,metabolism}} \) vs \(f_{\text{CL,renal/biliary}} \) in animals, in vitro human transporter data) before risk assessment based on worst case scenario (assume \(f_{\text{CL,metabolism}} = 1 \)).
Estimating f_m In Vitro
Estimation of f_m

- Identify which metabolizing enzyme(s) involved
- Estimate “What is Fraction” metabolized by DME: f_m

Structure of NCE and Metabolite Profiling generally gives good idea of what to look for:
- Oxidative vs Direct Conjugation vs other metabolic pathways
- NADPH-dependent or not

When contribution by a metabolizing enzyme is $\geq 25\%$ then determine f_m
fm Determination - Recommended Guidelines

- Identification of DME and fm estimation in NCE metabolism most sensitive when monitoring major metabolite(s) formed

- Quantitative metabolite assessment best done with 14C-NCE. When not available, ‘relative’ assessments can be made utilizing UV or LC/MS/MS

- When NCE has multiple metabolites, or 14C NCE &/or metabolite standards not available, monitoring NCE disappearance has yielded reasonable success (*caveat: parent needs to be moderate to high CL*)

- Common approaches for fm estimation: RAF/ISEF, selective enzyme inhibition (monitoring inhibitor cross-reactivity)

NCE: New Chemical Entity; DME: Drug Metabolizing Enzyme
f_m - Current Status: Quantitative or Qualitative?

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Tools available for RAF or ISEF</th>
<th>fm (from in vitro studies)</th>
<th>Clinical Victim DDI Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Recombinant Enzyme</td>
<td>Probe substrates</td>
<td>Tissue abundance</td>
</tr>
<tr>
<td>CYP</td>
<td>Yes (various)</td>
<td>Yes^a</td>
<td>Yes^a</td>
</tr>
<tr>
<td>FMO</td>
<td>Yes (1, 3, 5)</td>
<td>Yes^b</td>
<td>Yes^c</td>
</tr>
<tr>
<td>AO/XO</td>
<td>Emerging^d</td>
<td>Yes</td>
<td>Emerging^d</td>
</tr>
<tr>
<td>MAO</td>
<td>Yes (A & B)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>UGT</td>
<td>Yes (Various)</td>
<td>Yes^e</td>
<td>Emerging^f</td>
</tr>
<tr>
<td>SULT</td>
<td>Yes (Various)</td>
<td>Yes^h</td>
<td>Emerging^h</td>
</tr>
<tr>
<td>NAT</td>
<td>Yes (1 & 2)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>GST</td>
<td>Yes (Various)</td>
<td>No</td>
<td>Yes^l</td>
</tr>
<tr>
<td>CES</td>
<td>Yes (1 & 2)</td>
<td>Yes^j</td>
<td>No</td>
</tr>
</tbody>
</table>

- **a**: For major isoforms
- **b**: Non-isoform selective
- **c**: mRNA-based abundance reported
- **d**: In liver
- **e**: For e.g. 1A1, 1A4, 1A6, 1A9, 2B7
- **f**: For e.g. 1A1, 1A3, 1A4, 1A5, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B15, 2B17- liver, intestine, & kidney
- **g**: For some isoforms – e.g. 1A1, 1A4, 1A6, 1A9, 2B7
- **h**: For e.g. 1A1, 1A3/4, 1B1, 1E1, 2A1- Liver, intestine, kidney, lung (relative abundance)
- **i**: Limited reports
- **j**: Limited e.g GSTA1, A2, M1, M2, M3 and P1
- **k**: UV & fluorescent probe metabolic pathways

High: Several Reported
Moderate: Few/Occasional Reported
Low: None Reported
Perspectives of f_m Approaches

Areas we feel confident in:
- Identification of DMEs involved
- $f_{m,CYP}$, $f_{m,UGT}$ (select)
- Contribution of CYP vs other oxidative DMEs when pathways overlap
- Contribution of Conjugative DMEs
 - semi-quantitative (cold NCE) or quantitative (radiolabeled NCE) metabolite profiling in vitro human matrices &/or Ph1 studies

Areas we are gaining confidence in:
- f_m non-CYP enzymes
 - The “CYP” journey has helped demonstrate what we need- scaling of non-CYPs emerging
 - Scaling of CYPs & non-CYPs in extrahepatic tissues
 - f_m of low CL compounds

When quantitative f_m of a DME is not available, thoroughly assess known risk → incidence & magnitude of clinical DDI reported via that DME, before best/worst case scenario assumptions (e.g. $f_m \geq 0.5$)

DME: Drug Metabolizing Enzyme; NCE: New Chemical Entity
Modeling & Simulation in Victim Drug DDI Predictions
Models & Data Required Depends on Timing & Objective

<table>
<thead>
<tr>
<th>Common Models Used</th>
<th>Study/Data</th>
<th>Question to address/stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple Static</td>
<td>In vitro human metabolism study – met ID and profile</td>
<td>Involvement of metabolic CL and CYP enzyme</td>
</tr>
<tr>
<td>Mechanistic Static</td>
<td>Reaction phenotyping</td>
<td>Contribution of CYP in metabolic CL (f_m)</td>
</tr>
<tr>
<td>Mechanistic Dynamic</td>
<td>In silico & in vitro (logP, pKa, $f_{u,p}$, B/P, P_{app}, CL_{int} etc.)</td>
<td>Human PK (f_a, k_a, V_{ss}, CL) prediction</td>
</tr>
<tr>
<td></td>
<td>Preclinical mass balance study</td>
<td>Route(s) of CL</td>
</tr>
<tr>
<td></td>
<td>Clinical PK (oral)</td>
<td>Refine model and guide clinical DDI study design</td>
</tr>
<tr>
<td></td>
<td>Clinical PK (IV), human mass balance study</td>
<td>Disposition in human, estimate $f_{m\text{CYP}}$, F_G, f_a, F_{oral}, biliary or renal CL</td>
</tr>
<tr>
<td></td>
<td>Clinical DDI w/ strong inhibitor</td>
<td>confirm in vivo $f_{m\text{CYP}}$, predict other DDIs</td>
</tr>
</tbody>
</table>

- **Late / Discovery / Pre-FIH**
- **Clinical**
M&S Recommendations

Select a fit-for-purpose model, based on specific application and stage of drug discovery/development

Utilize sensitivity analysis to help identify uncertainty & its impact on DDI risk assessment thoroughly

• Recommend additional key experimental data
• Common parameters for sensitivity analysis: $f_{m\text{CYP}}, f_{u,gut}/F_g$

Consider other factors when leveraging DDI predictions for decision-making and clinical study plan (i.e. safety margin of victim drugs, co-meds, special populations & dose regimens)

Modelling is only as good as data provided so use caution with parameters & approximations to avoid poor & misleading outcomes
Integrated Strategy of Victim DDI Assessment

Majority of NCEs have the potential to be a victim of some DDI since they all have to be cleared by some pathway

Victim DDI risk assessment should be made at all stages with focus on f_{CL}, f_m, M&S

- Make best estimate of $f_{CL,\text{metabolism/renal/(biliary)}}$ (preclinical in vivo & IVIVE) & f_m (in vitro)
- Integrate all data via M&S for worst case scenario with assumption that all metabolism by major enzyme(s) identified in vitro
 - Informs whether clinical exclusion required (DDI/polymorphism) in FIH
 - Guides Safe Starting Dose for Victim DDI Study in Clinic

- Learn any additional information to refine DDI predictions from FIH studies
- Determine $f_{CL,\text{metabolism/renal/(biliary)}} \to ^{14}$C-Human ADME study
- Determine $f_m \to$ Clinical Victim DDI Study
- Refine DDI model to predict additional DDIs
- Support dose selection, labelling, justification of delay/waiver of clinical DDI studies