Industry Perspective on Manufacturing in Early Development

IQ Workshop, Feb 4-5, 2014, Washington, D.C.

Eric Schmitt
AbbVie
IQ Drug Product Manufacturing Working Group

- August 2012 issue of Pharmaceutical Technology Volume 36, Issue 8, pp. 56-61

Early Development GMPs for Drug-Product Manufacturing of Small Molecules

An Industry Perspective (Part III)

Richard Creekmore, Eleni Dokou, Amnon Eylath, Dennis Joiner, Michael Lovdahl, Jackson Pellett, Eric Schmitt, and John W. Skoug

The authors, part of the International Consortium on Innovation and Quality in Pharmaceutical Development (IQ Consortium), explore and define common industry approaches and practices when applying GMPs in early development. A working group of the consortium aims to develop a set of recommendations that can help the industry identify...
Position Paper Highlights

• Scope
 – Solid-oral dosage forms, small molecules
 – Defined early development as Phase 1 – 2a
 – U.S. Focus initially, may expand to other regions in future

• Process
 – Review 2008 FDA Phase 1 CGMP guidance and 21 CFR 211 requirements
 – Conduct short survey to understand application of CGMP across companies
 – Provide industry perspective on CFR requirements related to manufacturing Investigation Drug Products in early development

• General Conclusions
 – Flexibility needed as product and process knowledge is limited in early development
 – Changes should be expected, scientifically justified and documented
 – Quality systems and risk-based decision making assure patient safety
 – FDA Phase I guidance recognizes the need for flexibility, but lacks specifics
 – IQ survey shows high variability in approach to application of GMPs in early development
Objectives

- Initiate dialog between industry and regulators to reach common understanding of stage appropriate CGMP
- Facilitate development of new drug products
- Ultimately bring the best drug products to patients as quickly and cost-effectively as possible
CFR Requirements

• Quality Systems
• Facilities and Equipment
• Raw Materials
• Batch Documentation and Execution
90% have different systems for commercial and R&D
50% have different requirements for early development
IQ GMPs in Early Development

Relationships between material properties, process parameters and quality attributes are being developed.

CTS manufacturing is also development.

Process are not validated. Deviations should be expected and simply documented
Quality Systems

• Most critical aspect of quality in early development is subject safety.
• Recommend use of Quality Risk Management tools to ensure subject safety is not compromised
Risk Management Tools in Early Development

Process Flow Map and Risk Analysis for Site Preparation

- **Process**: Released Active Blend
- **Subject Risks**: Product quality, Incorrect formula, Content uniformity – variable dose, Incorrect/Variable Dose
- **Controls**: Released Active Granules, Weigh/Sieve Ingredients, Blend Ingredients, Weigh Unit Dose, Program Tab Press Settings, Compress Layer 1, Compress Layer 2, Weigh and Visually inspect each tablet, Finished Tablet

Adequacy of the specified blending process to provide content uniformity will be confirmed by the tablet content uniformity test results from both the lab and the site pilot runs, using identical equipment and process for blending and tablet compression.
Facilities

• Traditional Pilot Plant manufacturing and release
 – Follows same quality systems, controls and requirements for all phases

• GMP area within a laboratory setting
 – Small-scale GMP applications such as preparation of radioactive substances of ADME

• On-site Dose Preparation (extemporaneous formulation)
 – An effective method to prepare early phase CTS for small single site studies
 – Underutilized approach for formulation optimization of more advanced dosage forms
 ■ Example – “on-site preparation” of extended release tablets to explore prototype formulations with varying release rate
 --Significant savings can be realized without compromising patient safety
 ■ IQ Extemporaneous Formulations Working Group
Extemporaneous Formulation

- Significant potential to speed formulation optimization
- 6 months or more for complicated formulations
- Significant savings of API and development resource costs
Equipment

• No differences in equipment requirements for early development
• Equipment may be simpler less automated but basic qualification, maintenance, calibration and cleaning requirements do not change
• Opportunities to simplify how CGMP requirements are met in early development
Raw Materials

- Buildings and Facilities
- Control of Materials
- Receipt and Approval
Raw Material Receipt and Approval

• Specifications
 – Compendial
 • Any compendia is acceptable (USP/NF, EP, JP)
 – Non-compendial
 • Vendor specification or Food Chemical Codex should guide specification setting
Raw Material Receipt and Approval

• Testing

<table>
<thead>
<tr>
<th>Question</th>
<th>% Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>In early development, does your company repeat vendor testing for excipients used in CTS manufactures?</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>70%</td>
</tr>
<tr>
<td></td>
<td>20%</td>
</tr>
</tbody>
</table>

– If vendor is qualified, no need to repeat testing
– Qualification must occur before product release
 • Process should depend on stage of development and risk assessment
 • Could range from a questionnaire to a site audit
• Approval for Use

<table>
<thead>
<tr>
<th>Question</th>
<th>Never</th>
<th>Sometimes</th>
<th>Routinely</th>
</tr>
</thead>
<tbody>
<tr>
<td>In early development, does your company manufacture GMP clinical trial supplies (CTS) prior to full release of the API?</td>
<td>40%</td>
<td>50%</td>
<td>10%</td>
</tr>
<tr>
<td>In early development, does your company manufacture CTS prior to completion of full release testing of excipients?</td>
<td>40%</td>
<td>30%</td>
<td>30%</td>
</tr>
</tbody>
</table>

– Ideally materials should be tested and released prior to starting manufacture

– Manufacturing “at risk” is acceptable as long as the risk is with the manufacturer and not the patient
Batch Documentation and Execution

• Batch record requirements:
 – Name Strength, Description
 – Quantitative composition (per unit)
 – Batch size, Manufacturing instructions

• Record should allow replication of the process

• Executed record must be approved by Quality.
 – Survey showed 100% also pre-approved

• Document room clearance prior start
Batch Documentation and Execution

• Hold Times
 – In early development there should be no requirement to establish hold times
 – Release testing confirms quality during early development – supports establishing hold time later
Batch Documentation and Execution

• Change Control
 – Changes to raw materials and processes are inevitable in development
 – Control is not needed as in late stage and commercial validated processes.
 – Changes simply need to be documented
Batch Documentation and Execution

• Yield
 – Yield should be calculated to further process understanding and enable optimization
 – Minimum tolerances should not apply
Conclusions

• Organizations must recognize process understanding is very limited at Phase 1 – 2a
• Quality systems must ensure patient safety but also need flexibility to handled unplanned changes
Conclusions

- Underutilized approaches exist to quickly and efficiently answer formulation questions related to bioavailability, pharmacokinetics or target release rates for CR formulations.
- More discussion on risks/benefits of these approaches is warranted.

Breakout Session: Extemporaneous Formulation
Conclusions

• Documentation of manufacturing should be phase appropriate. Early phase should not be overly prescriptive so as to restrict process changes or discourage sampling.

• Changes should be expected and be quickly reviewed and approved by qualified personnel.

Breakout Session: Risk management in DP Manufacturing with Emphasis on Batch Documentation/Execution.
Closing Remarks

• FDA Guidance considers early development as Phase 1
• Industry working groups consider Phase 1 – 2a more appropriate
 – Phase 2a clinical studies are still small and closely monitored
 – Logical break point at POC
 – Maximizes utility of guidance
• Applicability of Phase 1 Guidance ambiguity
 – Clearly applies to a Phase 1 study on a new entity
 – Significant debate on applicability to Phase 1 studies on new formulations

• If the spirit of the guidance is to foster phase appropriate CGMP, it should apply to Phase 1 studies on all new formulations
IQ Member Company Survey

<table>
<thead>
<tr>
<th>Question</th>
<th>% Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>In early development, does your company manufacture GMP clinical trial supplies (CTS) prior to full release of the API?</td>
<td>Never: 40%</td>
</tr>
<tr>
<td>In early development, does your company manufacture CTS prior to completion of full release testing of excipients?</td>
<td>Never: 40%</td>
</tr>
<tr>
<td>In early development, does your company repeat vendor testing for excipients used in CTS manufactures?</td>
<td>Never: 10%</td>
</tr>
<tr>
<td>In early development, does your company require a vendor laboratory audit to accept materials on vendor CoA?</td>
<td>Yes: 30%**</td>
</tr>
<tr>
<td>Does the quality unit pre-approve CTS batch records?</td>
<td>Yes: 100%</td>
</tr>
<tr>
<td>Do you feel your company's approach to handle deviations that occur during early development CTS manufacturing provides adequate flexibility?</td>
<td>Never: 60%</td>
</tr>
<tr>
<td>Is a CAPA program applied to all early phase manufacturing exceptions?</td>
<td>Never: 55%</td>
</tr>
<tr>
<td>Is the quality system/requirements for R&D different than what is used in commercial production?</td>
<td>Never: 90%</td>
</tr>
<tr>
<td>Is the quality system/requirements for early development CTS different than later stage (Phase 2b and beyond) development?</td>
<td>Never: 50%</td>
</tr>
</tbody>
</table>