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Use models relevant to human dose for molecule design and progression

Chemistry Design

In vitro potency

In vitro ADME

In vivo ADME

In vivo PD & Safety

Synthesis

MRT from IV cassette

F from IV/PO study

Potency

Candidate 
work-up

QSAR
Papp

In silico potency 
models

QSAR MRT for 
target T1/2

QSAR Pgp for 
brain exposure

QSAR FASSIF 
Solubility

(relative to Papp)

Use machine learning models to inform decisions at every stage of the compound life cycle 270
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How have we gotten better at using models for design and progression?

• Treat continuous models categorically
• Emphasizes probability over r2 and helps adoption

• Highlight opportunity for model uptake
• Usage statistics and model performance

• Socialize benefits of improving compound quality 
• Speed and cost

• Focus synthesis/testing resources on designs/molecules 
compatible with program needs

Global Rat MRT Model Performance
(Prospective QSAR Predictions, N ~14,000)

Colored by:
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Pe
rc

en
t R

es
po

ns
e

N= 2324 N= 7694 N= 3928

< 0.75 0.75-1.5 > 1.5
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Our virtual design database enables analysis of model usage
• Virtual and real registration dates indicates usage
• Property prediction value distributions suggest acceptance

Measuring the adoption of prospective model usage

No pre-synthesis prediction
Pre-synthesis prediction

Pre-synthesis utilization of predictive 
tools has steadily increased…

But are we using the predictions to
make decisions?
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Project X: Using Rat P-gp predictions to prioritize chemistry
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DESIGN MAKE

QSAR Rat P-gp 
(BA/AB ratio)
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Synthesized compounds

Design and synthesis prioritization based on QSAR Rat P-gp

≤ 2 2 -4 > 4

Prediction generated pre-synthesis
No prediction pre-synthesis

≤ 2 2 -4 > 4
QSAR Rat P-gp
(BA/AB ratio)
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296
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38082

48231
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Synthesis skewed towards compounds with QSAR P-gp < 4Designs explored across the range of QSAR P-gp

Virtual compounds
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Project X: Using Rat P-gp predictions to improve measured properties

MAKE TEST

≤ 2
2-4
>4

Expt. Rat P-gpQSAR Rat P-gp 
(BA/AB ratio)

Corrected potency metric

≤ 2
2-4
>4

Most synthesized compounds have QSAR rat P-gp BA:AB < 4 

Rat P-gp Submission Prioritization based on QSAR Rat P-gp and corrected potency

Most compounds with measured P-gp have BA:AB <4

Corrected potency metric
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Deprioritize designs with 
predicted rat MRT <0.75 hr

Project Y: Using rat MRT predictions to prioritize chemistry

• Project team had shorter half-lives, so MRT predictions reviewed to set design guidelines

• Chemists began avoiding designs with QSAR rat MRT <0.75 hr

• Predicted MRT distributions for synthesized compounds shifted
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Project Y: Using rat MRT predictions to improve measured properties

• After adopting new QSAR MRT design criteria, more molecules had measured MRT values >1.5 hr

• Improving the prediction distribution helped the measured distribution
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Adaptive compound testing – faster and leaner
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QSAR Models

Potency Assay

P-gp
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Translational 
Assay
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OR 
Rat MRT<0.75h

QSAR:
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0.75< MRT <1.5
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P-gp
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Assay

QSAR:
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Potency Assay

P-gp

Rat Cassette PK

Translational 
Assay

QSAR:
Rat MRT >1.5h

Potency Assay

P-gp

Rat Cassette PK

Translational 
Assay

QSAR: 
Rat P-gp ER <2
Rat MRT >1.5h

Potency Assay

P-gp
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Progressing compounds with ML guidelines may get to key compound decision points faster 



How do we apply machine learning for 
development projects?
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Pyridine-Oxazoline (PyOx) ligands

• We use catalysis kits and automation to accelerate chemistry
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• Reductions
• Heck-type reactions

• Difunctionalizations of olefins
• Additions of arylboron to electron deficient bonds

• Cross-couplings
• C-H functionalizations

PyOx ligands in Asymmetric Catalysis

• Used with various metals: Pd, Ni, Ir, Cu

N
N

O

PyOx Ligand

Can we apply machine learning to high throughput synthesis data and iterate?

• Easily prepared in two steps

• Access to natural chiral pool -
aminoalcohols!

N CN H2N

OH

R1

R2

building block 1 building block 2

Yang, G., Zhang, W. Chem. Soc. Rev. 2018, 47, 1783



Public

Ligand evolution and iteration with machine learning

280Prospective predictions improving with more data

Proof-of-concept
with chiral ligand

Round 1 screen - improved selectivity?

- Train QSAR model 1
(<50 ligands)

- improved selectivity?
- Train future QSAR models

(>50 ligands)

design

outsource

test

Typical workflow searching for more selective catalysts/ligands
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Creating 96-well plates for high throughput experimentation
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• Use clustering to select diverse ligands to enable machine learning
• Create screening plate that enables ML and iterative ligand design in future projects

Select ligand 
closest to centroid

96-well HTE 
PyOx plate 

96-selection

21,474 ligands

Parse selection

N
N

O

96 cluster K–means partitioning

96-clusters

Chemist-Informed
Database
Literature
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Conclusions and outlook for machine learning in pharma

• Machine learning being applied to select quality designs, advance molecules, and optimize chemistry

• We are realizing benefits and investing further!

• Working to increase prediction capacity

• Developing experience with generative models

• Improving our retrosynthetic methods and learning how to maximize impact

• Developing more models for toxicology questions

• Gaining experience with learned potentials for physics-based modeling

• We anticipate increased organizational ML fluency and for traditional modeling to evolve
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