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Optimisation:

Direct:

Ruffolo et al. Geometric potentials from deep learning improve prediction of CDR H3 loop structures. Bioinformatics 36 (1-Suppl.), i268-i275 (2020)

Gainza et al., Protein interaction fingerprinting using deep learning. Nature Methods 17 (2), 2020

AI / ML for antibody identification, optimization and de novo design

Arvind Rajpal, Genentech LMDD

https://academic.oup.com/bioinformatics/article/36/Supplement_1/i268/5870520?login=true
https://www.nature.com/nmeth/volumes/17/issues/2


Brief History of Prescient Design
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Lab-in-the-Loop Framework

Manifold Sampler

Oracle

• Gradient-based multi-objective guidance
• Active learning & Uncertainty-awareness
• Efficient sampling of design space

Source: Gómez-Bombarelli, R., et al. (2018). 
ACS Central Science, 4(2), 268–276.

Proposing new designs
Our sampling procedure finds an optimal exploration-
exploitation strategy and can query SMEs for experimental 
validation/synthesis of generated designs

Generated designs with predicted properties Y

• Specification of 
desired properties
• Adaptive

1     2      3      4     n

Assay

Experimental validation of 
proposed designs 

An iterative framework for evidence acquisition, 
guided design, and validation 

• Selection of optimized leads
• Evaluation data for accepted/rejected 
proposals
• Additional SME feedback

Experimental 
feedback 

Refining the generative process recursively
The acquisition of experimental results -- both positive and 

negative -- combined with new data helps adapt the 
generative process and enables better optimization of 

future designs

Guided sampling
Random 
mutations may 
yield degenerate
or suboptimal
designs
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Manifold Sampler
Vladimir Gligorijevic, Dan Berenberg, Stephen Ra, Andy Watkins, Simon Kelow, Rich Bonneau, Kyunghyun Cho
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Real-world, high-dimensional data lie (roughly) on a low-dimensional manifold (Chapelle 2006)

x x
x

x
x

x
x

Instead of the (large) combinatorial space, search for a novel sequence     is restricted on the (small) 
manifold space, i.e.,  

Function-guided design:                          for a scoring function          trained on        where                                           
is an oracle.

Bengio (2009)

The Curse of Dimensionality and the Manifold Assumption
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Given a protein (target) sequence
, learn a Seq2Seq DAE model                

where      is a corrupted
version of     :

Two approaches:
1. Autoregressive Seq2Seq:

1. Non-autoregressive Seq2Seq:

Autoregressive Non-autoregressive

Non-autoregressive sampling. Makes changes in multiple positions of a target 
sequence enabling effective exploration of the overall fitness landscape and resulting 
in diverse sequence designs

Model: Overview
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Deep manifold sampler identifies the protein manifold by learning to denoise [Gligorijevic et al., 2021]
It thereby trades off between statistical efficiency and combinatorial complexity.

Antibody Design: Deep manifold sampler

VLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPE
TLEKFDRFKHLKTEAEMKASEDLKKHGVTVLTALGAILK
KKGHHEAELKPLAQSHATKHKIPIKYLEFISEAIIHVLHS
RHPGDFGADAQGAMNKALELFRKDIAAKYKELGY

VLSEGEWQLVLHVWAKVEADVAGHGQQVDILIRLFKSH
PETLEKFDRFKHLKTEAEMKKATASEDLKKHGVTVLTA
LGAILKKKGHHEAELKPLAQSHATKHKIPIKYLEFISEAII
HVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELG
Y

1. Sequence corruption 2. Denoising
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Applications to LMDD



More details in our recent publications



Multi-property optimization

• Parallel optimization of multiple properties 
• currently optimized sequentially 
• e.g. affinity, polyreactivity, viscosity

• Increased yield
• increased number of candidate sequences that meet 

criteria

• Better optimisation
• optimizing property n will not degrade property n-1 as it 

might with sequential optimisation

• Meta-learning multiple properties
• robustness for small training datasets

• Manifold Sampler naturally models epistasis 

Dataset 1
(Stability)

Dataset 5
(Activity)

Dataset 2
(Viscosity)

...

Multiple property data Predicted properties

Gradient-based 
multi-objective 

sampling

Feedback loop of evaluation 
of predictions of individual 
assays enables adaptive, 
guided sampling in design 
space

Design with Manifold Sampler

Source: Gómez-Bombarelli, R., et al. (2018). 
ACS Central Science, 4(2), 268–276.
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Chain pairing and epitope diversification

• Sufficient data on VH-VL pairing across 
multiple immunizations  

• High quality negative examples (important 
for our approach) can be generated by 
pairing VH and VL across immunizations 
to disparate targets. 

• Chain pairing will feed into better epitope 
clustering and identification of rare 
epitopes.

• Sorting paratopes into clusters 
corresponding to epitopes will be done in 
manifold representation. 

• Representatives from clusters or rare 
epitopes feed directly into design

Paratopes clustered on manifold
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De novo affinity design

(6XKR)

• Given any target protein or interface the problem 
is well constrained.

• We first set up a graph representing the desired 
interaction to enable geometric deep learning.

• The Manifold Sampler is then used to power 
designs on that graph. 

• Antibody (and protein-protein) interfaces are well 
represented in the PDB, and data to begin training 
this model is in-hand.

• Validation with structure determination and/or 
characterisation of binding feeds back on model 
(active learning). 
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Readouts from multiple iterations of lab-in-the-loop

Wide application:
2 development targets, Ova and Her.  6 ‘hot’ targets, 4 ‘medium’ targets 
Applications to other Fab like formats. Application to non antibody 
affinity.

Active learning is working (not a disaster  ;-)

Improvement in affinity and multiple developability parameters for 5 of 
6 initial targets.

Mutations/Edit-distances of 5-65 … expression, binding and good dev 
for some molecules with > 50 mutations. True global design. 

New high throughput lab techniques will drive even better approaches to 
active learning.

Good early readouts with ‘real’ de novo and grafting de novo. Much 
work remains.
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Team

Even mix of: 
- Structure Biology
- ML for DD
- Frontiers ML
- Engineering
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